MRA DAV Public School Solan

Session: 2016-17
 Subject: Mathematics
 Class - XII

Duration: 3 hr .

General Instructions:

(i) All questions are compulsory.
(ii) This question paper contains 29 questions.
(iii) Question 1-4 in Section \mathbf{A} are very short-answer type questions carrying 1 mark each.
(iv) Question 5-12 in Section B are short-answer type questions carrying 2 marks each.
(v) Question 13-23 in Section C are long-answer-I type questions carrying 4 marks each.
(vi) Question 24-29 in Section D are long-answer-II type questions carrying 6 marks each.
(vii) Use of calculators is not permitted.

SECTION - A

1. Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is $2 \hat{i}-3 \hat{j}+6 \hat{k}$.
2. If A is a square matrix such that $|A|=5$. Write the value of $\left|A A^{t}\right|$.
3. If $f(x)=x+7$ and $g(x)=x-7, x \in R$, then find fog (7).
4. Find the integrating factor of the differential equation: $\left(\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{d x}{d y}=1$.
SECTION - B
5. Let $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}5 & 2 \\ 7 & 4\end{array}\right]$ and $C=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$. Find a matrix D such that $\mathrm{CD}-\mathrm{AB}=0$.
6. If $y=x^{x^{x^{x-\cdots--\infty}}}$, then find that $x \frac{d y}{d x}=\frac{y^{2}}{1-y \log x}$
7. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{2} / \mathrm{sec}$. The falling sand form a cone on the ground in such a way that the height of the curve is always one-sixth of the radius of the base. How fast in the height of the sand cone increasing when the height is 4 cm ?
8. Find the approximate change in the volume V of a cube of side ' x ' metres caused by increasing the side by 2%.
9. Evaluate: $\int \frac{\sqrt{9-(\log x)^{2}}}{x} d x$.
10. Form the differential equation of the family of ellipses having foci on x axis and centre at the origin.
11. If the sum of two unit vectors is a unit vector, show that magnitude of their difference is $\sqrt{ } 3$.
12. A die is thrown twice and the sum of the numbers appearing is observed to be 7. What is the conditional probability that the number 2 has appeared atleast once?

SECTION - C

13. Evaluate: $\int_{1}^{4}(|x-1|+|x-2|+|x-3|) d x$

OR

| cbse Sguess $^{\text {GgSEGuess.com }}$ |
| :--- | :--- |

Evaluate: $\int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right) d x$
14. Find the shortest distance between the following lines:
$\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and $\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}+(2 s+1) \hat{k}$ OR
Find the equation of the plane passing through the line of intersection of the planes $2 \mathrm{x}+\mathrm{y}-\mathrm{z}=3$ and $5 \mathrm{x}-3 \mathrm{y}+4 \mathrm{z}+9=0$ and is parallel to the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{5-z}{-5}$.
15. Evaluate: $\int \frac{1}{x^{4}+4 x^{2}+3} d x$
16. Prove that $2 \sin ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{17}{31}\right)=\frac{\pi}{4}$.

OR
Solve the equation for $\mathrm{x}: \cos \left(\tan ^{-1} \mathrm{x}\right)=\sin \left(\cot ^{-1} 3 / 4\right)$.
17. For what value of k is the following function continuous at $x=\frac{-\pi}{6}$?

$$
f(x)=\left\{\begin{array}{ccc}
\frac{\sqrt{3} \sin x+\cos x}{x+\frac{\pi}{6}} & , & x \neq \frac{-\pi}{6} \\
k & , & x=\frac{-\pi}{6}
\end{array}\right.
$$

18. The monthly income of Aryan and Babban are in the ratio $3: 4$ and their monthly expenditure are in the ratio 5:7. If each saves Rs 15000 per

cbse Sguess	

month, find their monthly incomes using matrix method. Which value is reflected in this problem?
19. Differentiate $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}\right)$ w.r.t. $\cos ^{-1} x^{2}$.
20. Find the general solution of the differential equation:
$(1+\tan y)(d x-d y)+2 x d y=0$.

OR

Solve the following differential equation: $\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$.
21. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, show that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$, where $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.
22. In a certain college 4% of boys and 1% of girls are taller than 1.75 metres. Furthermore, 60% of that students in the college are girls. A student is selected at random from the college and is found to be taller than 1.75 metres. Find the probability that the selected student is a girl.
23. Prove that if E and F are independent events, then so are the events E and F^{\prime}.

SECTION - D

24. Find the equation of the plane which contains the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$ and whose x - intercept is twice its z - intercept.

Hence write the vector equation of a plane passing through the point $(2,3,-1)$ and parallel to the plane obtained above.

| cbse Sguess \quad cBSEGuess.com |
| :--- | :--- |

25. Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $\sin ^{-1} \sqrt{\frac{2}{3}}$.

OR

If the function $f(x)=2 x^{3}-9 m x^{2}+12 m^{2} x+1$, where $m>0$ attains its maximum and minimum at p and q respectively such that $\mathrm{p}^{2}=\mathrm{q}$, then find the value of m.
26. On the set $\{0,1,2,3,4,5,6\}$ a binary operation * is defined as:
$a * b=\left\{\begin{array}{c}a+b, \quad \text { if } a+b<7 \\ a+b-7, \text { if } a+b \geq 7\end{array}\right.$
Write the operation table of the operation * and prove that zero is the identity for this operation and each element $\mathrm{a} \neq 0$ of the set is invertible with 7 - a being the inverse of a.
27. Using property of determinants, prove that
$\left|\begin{array}{ccc}(x+y)^{2} & z x & z y \\ z x & (z+y)^{2} & x y \\ z y & x y & (z+x)^{2}\end{array}\right|=2 x y z(x+y+z)^{3}$

OR

If $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right)$ and $\mathrm{A}^{3}-6 \mathrm{~A}^{2}+7 \mathrm{~A}+\mathrm{kI}_{3}=0$ find k .
28. A company manufactures two types of cardigans: type A and type B. It costs Rs 360 to make a type A cardigan and Rs 120 to make type B cardigan. The company can make at most 300 cardigans and spend at most Rs 72000 a day. The number of cardigans of type B cannot exceed

cbse Fguess	CBSEGuess.com

the number of cardigans of type A by more than 200. The company makes a profit of Rs 100 for each cardigan of type A and Rs 50 for every cardigan of type B. Formulate this problem as a linear programming problem to maximize the profit of a company. Solve it graphically and find maximum profit.
29. Using integration, find the area of the curves $y=\sqrt{16-x^{2}}$, which is exterior to the parabola $y^{2}-6 x=0$.

